以水为工作介质,考虑了液体的轻微可压缩性,研究了声场中气泡群的动力学特性,对单一型和混合型气泡群内微泡的初始半径、气泡的数目及声频率和声压对气泡动力学特性进行了数值研究.分析了各参数对气泡运动特性和气泡崩溃时所产生压力脉冲的影响.研究了单一型气泡群内气泡动力学的混沌特性,分析了气泡处于混沌特性下两次崩溃压力脉冲特征,结果表明:适合的参数有利于提高声空化处理效果.
Considering liquid slight compressibility, the dynamical behaviors of a bubble cluster in an acoustic field are investigated by regarding water as a work medium. The effects of initial radius of gas bubble, the number of bubbles for monodisperse cluster and polysidperse cluster, acoustic frequency, acoustic pressure on bubble dynamics are numerically simulated. The effect of each parameter on bubble motion state and collapse pressure is analysed. Chaotic characteristics of bubble dynamics in monodisperse cluster are investigated. Two collapse pressure features under chaotic state are analysed. The results show that the suitable parameters are helpful for improving cavitation treatment effect.