位置:成果数据库 > 期刊 > 期刊详情页
基于级联过滤的多模型融合的推荐方法
  • ISSN号:1000-1220
  • 期刊名称:《小型微型计算机系统》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]广东工业大学计算机学院,广州510006, [2]广东石油化工学院计算机与电子信息学院,广东茂名525000
  • 相关基金:国家自然科学基金面上项目(61272382)资助.
中文摘要:

针对当前主流推荐算法无法甄别离群样本和弱贡献率样本,且单模型算法泛化能力较弱等问题,提出一种基于级联过滤的多模型融合的推荐方法.该方法先采用级联回归模型过滤掉离群样本和弱贡献率样本;然后,把推荐问题抽象成二分类问题和回归问题,分别采用基于Bagging的随机森林和基于Boosting的梯度提升回归树两种树型算法、线性的逻辑回归算法来拟合用户兴趣;最后,将这三种算法分别训练若干模型进行线性融合,取Top-N推荐.实验表明,该方法不仅有效提高了推荐精度,还增强了模型的泛化能力,具有较强的实用价值.

英文摘要:

The current recommendation algorithms are unable to identify outlier and weak-contribution-rate samples, and single modelalgorithms show poor generalization ability, which seriously affect the quality of recommendation. To solve these problems, an im-proved method named Recommendation method of Multi-Model Combination based on the Cascaded Filtering is presented. This meth-od firstly uses cascade regression model to filter out outlier and weak-contribution-rate samples. Then the recommendation problem isabstracted into two-category and regression problems, respectively, the random forest algorithm based on bagging and gradient boostingregression trees based on boosting, logistic regression algorithm are used to fit the user's interest. Finally, several models of each algo-rithm are trained for linear fusion to do Top-N recommendation. The experiments demonstrate this method not only improves the accu-racy of recommendation, but also enhances the model generalization ability, and has a strong practical value.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《小型微型计算机系统》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院沈阳计算技术研究所
  • 主编:林浒
  • 地址:沈阳市浑南新区南屏东路16号
  • 邮编:110168
  • 邮箱:xwjxt@sict.ac.cn
  • 电话:024-24696120 024-24696190-8870
  • 国际标准刊号:ISSN:1000-1220
  • 国内统一刊号:ISSN:21-1106/TP
  • 邮发代号:8-108
  • 获奖情况:
  • 中国自然科学核心期刊,中国科学引文数据库来源期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23212