位置:成果数据库 > 期刊 > 期刊详情页
结合形状约束的Graph Cut行人分割
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP391.413[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]安徽大学计算机科学与技术学院,合肥230601, [2]安徽省工业图像处理与分析重点实验室(安徽大学),合肥230039
  • 相关基金:国家自然科学基金资助项目(61202228,61272152).
中文摘要:

传统的Graph Cut算法没有对目标的形状予以限制,很难得到语义化的分割结果,即无法保证分割出来的是“行人”.针对该问题提出一种结合形状和底层特征的Graph Cut算法.对于行人分割,用大量真实行人轮廓来表达“行人”的先验形状,对Graph Cut分割算法予以约束,同时构建一个行人模板的层次树以减少匹配时间;并且提出一种区分性的外观模型来替换原来的外观模型.实验结果证明,该算法的分割结果明显优于传统Graph Cut算法的分割结果,所得到的轮廓与真实的行人轮廓比较吻合.

英文摘要:

Most of the variants of Graph Cut algorithm do not impose any shape constraints on the segmentations, rendering it difficult to obtain semantic valid segmentation results. As for pedestrian segmentation, this difficulty leads to the non-human shape of the segmented object. An improved Graph Cut algorithm combining shape priors and discriminativcly learned appearance model was proposed in this paper to segment pedestrians in static images. In this approach, a large number of real pedestrian silhouettes were used to encode the a'priori shape of pedestrians, and a hierarchical model of pedestrian template was built to reduce the matching time, which would hopefully bias the segmentation results to be humanlike. A discriminative appearance model of the pedestrian was also proposed in this paper to better distinguish persons from the background. The experimental results verify the improved performance of this approach.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679