在不对称 Michael加成反应中,有机小分子如伯胺、吡咯烷类衍生物、(硫)脲类、手性方酰胺、联萘类、奎宁类、手性膦、离子液体和肽类等是目前使用的主要催化剂,如果能避免或少量使用有机溶剂,则更符合“绿色化学”的环境友好发展方向.β-环糊精的内腔疏水,而外部亲水,可以类似酶分子结合有机反应物,在水相体系进行催化反应.当β-环糊精分子上连接催化部位或结合部位时,能产生更优异的包结底物和诱导对映选择性的能力.目前基于β-环糊精衍生物构筑人工类酶催化剂用于不对称 Michael加成反应的报道较少.本文通过亲核取代反应将氨基类有机小分子与单(6-O-p-甲苯磺酰基)-β-环糊精结合,得到9个氨基修饰β-环糊精衍生物CD-1–CD-9(收率在24.2%–64.9%,分子结构通过1H NMR,13C NMR和 ESI-MS表征确认),并用于室温水相体系不对称Michael加成的仿生催化反应,以期获得较好的催化反应活性和对映选择性.通过设计不同β-环糊精衍生物的修饰基团结构、改变反应介质pH值和反应底物结构,分析了Michael加成反应体系产物产率和对映选择性的变化,采用2D-1H ROESY NMR、紫外吸收光谱、红外光谱和和量子化学计算,分析了β-环糊精衍生物和反应底物分子的包结状态,探究了反应过程机理.结果显示,在该水相体系中进行的不对称Michael加成反应产物产率和对映体过量值(ee值)受修饰基团结构、反应介质pH值和底物结构影响较大.当反应介质pH值低于6.0时,由于氨基分子被质子化而失去催化活性;当 pH值为7.5时,获得中等水平的对映选择性,通过量子化学在 ONIOM (B3LYP/6-31G(d):PM3)水平上的优化计算发现,底物分子与β-环糊精衍生物的包结可以出现两种形式:当底物分子的活性部位接近β-环糊精衍生物小口端的修饰基团时,产生分子内催化,诱导反应产生较好的对映选择
Nineβ‐cyclodextrin derivatives containing an amino group were synthesized via nucleophilic sub‐stitution from mono(6‐O‐p‐tolylsulfonyl)‐β‐cyclodextrin and used in asymmetric biomimetic Mi‐chael addition reactions in water at room temperature. The mechanism responsible for the moder‐ate activity and enantioselectivity of the β‐cyclodextrin derivatives was explored using nuclear magnetic resonance spectroscopy, namely 2D 1H rotating‐frame overhauser effect spectroscopy (ROESY), ultraviolet absorption spectroscopy, and quantum chemical calculations, which provide a useful technique for investigating the formation of inclusion complexes. The effects of the pH of the reaction medium, theβ‐cyclodextrin derivative dosage, the structure of the modifying amino group, and various substrates on the yield and enantioselectivity were investigated. The results indicated that these factors had an important effect on the enantiomeric excess (ee) in the reaction system. Experiments using a competitor for inclusion complex formation showed that a hydrophobic cavity is necessary for enantioselective Michael addition. A comparison of the reactions using 4‐nitro‐β‐nitrostyrene and 2‐nitro‐β‐nitrostyrene showed that steric hindrance improved the enan‐tioselectivity. This was verified by the optimized geometries obtained from quantum chemical cal‐culations. An ee of 71%was obtained in the asymmetric Michael addition of cyclohexanone and 2‐nitro‐β‐nitrostyrene, using (S)‐2‐aminomethylpyrrolidine‐modified β‐CD as the catalyst, in an aqueous buffer solution, i.e., CH3COONa‐HCl (pH 7.5).