位置:成果数据库 > 期刊 > 期刊详情页
Preparation of Ni/bentonite catalyst and its applications in the catalytic hydrogenation of nitrobenzene to aniline
  • ISSN号:1004-9541
  • 期刊名称:《中国化学工程学报:英文版》
  • 时间:0
  • 分类:TQ[化学工程]
  • 作者机构:[1]Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China, [2]School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
  • 相关基金:Supported by the National Natural Science Foundation of China(21566005,21425627); Natural Science Foundation of Guangxi province(2014GXNSFAA118049); the Open Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology(2013K011); the Patent Project of Colleges and Universities of Guangxi Zhuang Autonomous Region(KY2015ZL001).
中文摘要:

Ni supported on bentonite was prepared by the impregnation method with different nickel contents, applied to the hydrogenation of nitrobenzene to aniline in a fixed-bed reactor, and it was characterized by X-ray diffraction(XRD), H2-temperature programmed reduction(H2-TPR), and X-ray photoelectron spectrometry(XPS). The results showed that Ni/bentonite catalyst with 20 wt% nickel content provided a higher conversion of nitrobenzene and selectivity of aniline compared to other catalysts. Ni O was the precursor of the active component of the catalyst, and the small crystallite size as well as the highly dispersed Ni O on the Ni/bentonite-20 catalyst, contributed to the catalytic performance. The hydrogenation of nitrobenzene was carried out at 300 °C with a H2 gaseous hourly space velocity of 4800 ml·(g cat)-1·h-1and a nitrobenzene liquid hourly space velocity of4.8 ml·(g cat)-1·h-1over Ni/bentonite-20. A 95.7% nitrobenzene conversion and 98.8% aniline selectivity were obtained. While the nitrobenzene liquid hourly space velocity was 4.8 ml·(g cat)-1·h-1, the yield of aniline was more than 95.0% during a 10-hour reaction.

英文摘要:

Ni supported on bentonite was prepared by the impregnation method with different nickel contents, applied to the hydrogenation of nitrobenzene to aniline in a fixed-bed reactor, and it was characterized by X-ray diffraction(XRD), H2-temperature programmed reduction(H2-TPR), and X-ray photoelectron spectrometry(XPS). The results showed that Ni/bentonite catalyst with 20 wt% nickel content provided a higher conversion of nitrobenzene and selectivity of aniline compared to other catalysts. NiO was the precursor of the active component of the catalyst, and the small crystallite size as well as the highly dispersed NiO on the Ni/bentonite-20 catalyst, contributed to the catalytic performance. The hydrogenation of nitrobenzene was carried out at 300℃ with a H_2 gaseous hourly space velocity of 4800 ml·(g cat)^-1·h^-1and a nitrobenzene liquid hourly space velocity of4.8 ml·(g cat)^-1·h^-1 over Ni/bentonite-20. A 95.7% nitrobenzene conversion and 98.8% aniline selectivity were obtained. While the nitrobenzene liquid hourly space velocity was 4.8 ml·(g cat)^-1·h^-1, the yield of aniline was more than 95.0% during a 10-hour reaction.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国化学工程学报:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科协
  • 主办单位:中国化学工业与化学工程学会
  • 主编:
  • 地址:北京东城区青年湖路13号
  • 邮编:100011
  • 邮箱:cjche@cip.com.cn
  • 电话:010-64519487/88
  • 国际标准刊号:ISSN:1004-9541
  • 国内统一刊号:ISSN:11-3270/TQ
  • 邮发代号:
  • 获奖情况:
  • 1998年化工系统优秀信息成果一等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,美国科学引文索引(扩展库),英国高分子图书馆,日本日本科学技术振兴机构数据库,中国中国科技核心期刊
  • 被引量:385