记[k]={1,2,…,k),称为颜色集.设φ:E(G)→[k]为图G的边集合到[k]的映射,令f(v)表示与顶点v关联的边的颜色的加和.如果对任意一条边uv∈E(G),都有φ(u)≠φ(v),f(u)≠f(v),则称φ为图G的邻和可区别[k]-边染色,k的最小值称为图G的邻和可区别边色数,记为ndi_Σ(G).若对任意一条边uv∈E(G),都有f(u)≠f(v),则称φ为图G的k-边权点染色,称图G是k-边权可染的.运用组合零点定理证明了对于最大度不等于4的Halin图有:ndi_∑(G)≤Δ(G)+2,并证明了任一Halin图是4-边权可染的.
Let [k] = {1,2,...,k}, it is the color set. Let φ : E(G) →[k] be a mapping. Let f(v) denote the sum of the colors of the edges incident with vertex v. ~ is called a neighbor sum distinguishing [k]- edge coloring of G ifφ(u) ≠φ(v), f(u) ≠ f(v) for each edge uv C E(G). The smallest value k in such a coloring of G is called neighbor sum distinguishing edge index, and is denoted by ndi∑(G). ~ is called a vertex coloring k- edge weighting of G if f(u) ≠ f(v) for each edge uv E E(G). G is called k- edge weight colorable. By using the Combinatorial Nullstellensatz, it is proved that ndi∑(G) ≤A(G) + 2 for each Halin graph with A(G)≠ 4, and each Halin graph is 4-edge weight colorable.