位置:成果数据库 > 期刊 > 期刊详情页
一种新的自适应机动目标跟踪算法
  • ISSN号:1004-731X
  • 期刊名称:《系统仿真学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]长安大学电子与控制工程学院,西安710064, [2]西安交通大学电子与信息工程学院,西安710049
  • 相关基金:国家重点基础研究发展计划973计划课题(2007CB311006); 国家自然科学基金(60574033)
中文摘要:

在"当前"统计(CS)模型基础上,提出了一种新的机动目标自适应滤波算法,当前统计模型-修正强跟踪滤波(CS-MSTF)算法。新算法在保留"当前"统计模型及强跟踪滤波器(STF)对一般机动目标跟踪精度高的优点的同时,作出以下改进:针对强跟踪滤波器在机动部分获得完美性能的同时,非机动部分的精度却不理想的缺陷,对预测误差协方差及渐消因子的计算作出修正,同时改进机动部分和非机动部分的精度;将目前常用的估计误差协方差的计算公式采用更加可靠的Joseph公式,增强了数值的稳定性和算法的鲁棒性。蒙特卡罗仿真表明,新算法的性能优于当前统计模型-强跟踪滤波(CS-STF)算法,能够进行有效估计。

英文摘要:

Based on the "current" statistical model,a new adaptive maneuvering target tracking algorithm,CS-MSTF,was proposed. The new algorithm,keeping the merits of high tracking precision that the "current " statistical model and strong tracking filter(STF) have in tracking maneuvering target has made the modifications as such:First,STF has the defect that it achieves the perfert performance in maneuvering segment at a cost of the precision in non-naneuvering segment,so the new algorithm modifies the prediction error covariance matrix and the fading factor to improve the tracking precision both of the maneuvering segment and non-maneuvering segment; The estimation error covariance matrix was calculated using the Joseph form,which is more stable and robust in numerical. The Monte-Carlo simulation shows that the CS-MSTF algorithm has a more excellent performance than CS-STF and can esitmate efficiently.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《系统仿真学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团公司
  • 主办单位:北京仿真中心 中国仿真学会
  • 主编:李伯虎
  • 地址:北京市海淀区永定路50号院
  • 邮编:100039
  • 邮箱:simu-xb@vip.sina.com
  • 电话:010-88527147
  • 国际标准刊号:ISSN:1004-731X
  • 国内统一刊号:ISSN:11-3092/V
  • 邮发代号:82-9
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:51729