抑制的一个多环基于 autoregressive 为预兆的控制计划建模外长部分的最少的广场(ARX 请) 框架被建议处理高尺寸,联合并且在工业进程的限制问题由于安全限制,环境规定,消费者说明和物理限制。ARX 请,去耦特性启用转 multivariable 模型在进 MPC 控制器在潜伏的空格设计的多环单身者输入单身者输出(SISO ) 的原来的空格的预兆的控制(MPC ) 控制器设计。反复的方法的一个想法被用于 decouple 限制潜伏的变量在请,框架和递归的最少的平方被介绍 ARX 请识别模型。这个算法为乙烯聚合与适应内部模型控制(IMC ) 作比较被用于一个非方形的模拟系统和一个搅动的反应堆方法基于 ARX 请框架。它的申请证明了这个方法超过适应 IMC 方法基于 ARX 请框架到某程度。
A multi-loop constrained model predictive control scheme based on autoregressive exogenous-partial least squares (ARX-PLS) framework is proposed to tackle the high dimension, coupled and constraints problems in industry processes due to safety limitation, environmental regulations, consumer specifications and physical restric-tion. ARX-PLS decoupling character enables to turn the multivariable model predictive control (MPC) controller design in original space into the multi-loop single input single output (SISO) MPC controllers design in latent space. An idea of iterative method is applied to decouple the constraints latent variables in PLS framework and recursive least square is introduced to identify ARX-PLS model. This algorithm is applied to a non-square simulation system and a stirred reactor for ethylene polymerizations comparing with adaptive internal model control (IMC) method based on ARX-PLS framework. Its application has shown that this method outperforms adaptive IMC method based on ARX-PLS framework to some extent.