Laczkovich证明了如果正方形能划分成有限个不重叠的相似三角形的并,那么或者划分成的三角形是直角三角形,或者划分成的三角形的内角都是π的有理倍.在此基础上推广了Laczkovich的结果,即研究了正多边形的相似三角形划分问题.
Laczkovish proved that if a triangle a tiles a square then either △ is a right triangle or the angles of △ are rational multiples of π. In this paper the above result is generalized to regular polygons, that is, the tilings of regular polygons with similar triangles.