We investigate the ground state of bosons with long-range interactions in the large U limit on a triangular lattice. By mapping this system to the spin-1/2 XXZ model in a magnetic field, we can apply the spin wave theory to this study. We demonstrate how to construct the phase diagrams within the spin wave theory. The phase diagrams are given in an extensive parameter region, where, besides the superfluid phase, diverse solid and supersolid phases are shown to exist in this model.Especially, we find that the phase diagram obtained in this method is consistent with the one obtained previously using numerical techniques in the Ising limit. This confirms the effectiveness of our method. We analyze the stability of all the obtained supersolids and show that they will not be ruined by the quantum fluctuations. We observe that the quantum fluctuations in the stripe supersolid phase could be enhanced by the external field. We also discuss the relevance of our result with the experiment that may be realized with ultracold bosonic polar molecules in a triangular optical lattice.
We investigate the ground state of bosons with long-range interactions in the large U limit on a triangular lattice. By mapping this system to the spin-1/2 XXZ model in a magnetic field, we can apply the spin wave theory to this study. We demonstrate how to construct the phase diagrams within the spin wave theory. The phase diagrams are given in an extensive parameter region, where, besides the superfluid phase, diverse solid and supersolid phases are shown to exist in this model. Especially, we find that the phase diagram obtained in this method is consistent with the one obtained previously using numerical techniques in the Ising limit. This confirms the effectiveness of our method. We analyze the stability of all the obtained supersolids and show that they will not be ruined by the quantum fluctuations. We observe that the quantum fluctuations in the stripe supersolid phase could be enhanced by the external field. We also discuss the relevance of our result with the experiment that may be realized with ultracold bosonic polar molecules in a triangular optical lattice.