这份报纸建议新、没有分发的测试叫了组意外事故测试(GC,为短) 为测试,二或几个独立人士取样。与传统的 nonparametric 测试相比, GC 测试趋于基于样品,和它的地点探索更多的信息 -- ,规模 -- ,并且 shapesensitive。作者进行比较 GC 的研究为测试几件样品为二个样品案例与 Wilcoxon 等级和测试(W) , Kolmogorov-Smirnov 测试(KS ) 和 Wald-Wolfowitz 跑测试(WW ) ,并且与 Kruskal-Wallis (KW ) 测试的某模拟。模拟结果表明那 GC 测试通常超过另外的方法。
This paper proposes a new and distribution-free test called "Group Contingency" test (GC, for short) for testing two or several independent samples. Compared with traditional nonparametric tests, GC test tends to explore more information based on samples, and it's location-, scale-, and shapesensitive. The authors conduct some simulation studies comparing GC test with Wilcoxon rank sum test (W), Kolmogorov-Smirnov test (KS) and Wald-Wolfowitz runs test (WW) for two sample case, and with Kruskal-Wallis (KW) for testing several samples. Simulation results reveal that GC test usually outperforms other methods.