位置:成果数据库 > 期刊 > 期刊详情页
Numerical simulation of motion and deformation of ring bubble along body surface*
  • ISSN号:0253-4827
  • 期刊名称:《应用数学和力学:英文版》
  • 时间:0
  • 分类:O354[理学—流体力学;理学—力学] TV131.32[水利工程—水力学及河流动力学]
  • 作者机构:[1]College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, P. R. China
  • 相关基金:Project supported by the Key Program of the National Natural Science Foundation of China (No. 50939002), the National Defense Basic Scientific Research Program of China (No. 613157), and the Excellent Young Science Foundation of the National Natural Science Foundation of China (No. 51222904)
中文摘要:

Based on the theory of compressible fluid, a three-dimension boundary element method is utilized to research the motion of bubble. The far-field noise radiation during the growth and contraction is calculated by the Kirchhoff formula and the Ffowcs Williams-Hawkings(FW-H) formula with a fixed radiation surface being arranged at the near-field of bubble as a new acoustic source. The results show that the amplitude of the sound pressure induced by non-spherical bubble is lower than that of spherical bubble in the contraction phase. The retardance effect is more obvious when the observer is farther away from the bubble. In the anaphase of contraction, the observer with the maximum amplitude of sound pressure moves up with the obvious jet. Larger buoyance parameters will generate lower sound pressure amplitudes in the anaphase, while larger intensive parameters will cause higher sound pressure amplitudes in the whole procedure of bubble motion.

英文摘要:

Based on the theory of compressible fluid, a three-dimension boundary element method is utilized to research the motion of bubble. The far-field noise radiation during the growth and contraction is calculated by the Kirchhoff formula and the Ffowcs Williams-Hawkings (FW-H) formula with a fixed radiation surface being arranged at the near-field of bubble as a new acoustic source. The results show that the amplitude of the sound pressure induced by non-spherical bubble is lower than that of spherical bubble in the contraction phase. The retardance effect is more obvious when the observer is farther away from the bubble. In the anaphase of contraction, the observer with the maximum amplitude of sound pressure moves up with the obvious jet. Larger buoyance parameters will generate lower sound pressure amplitudes in the anaphase, while larger intensive parameters will cause higher sound pressure amplitudes in the whole procedure of bubble motion.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《应用数学和力学:英文版》
  • 主管单位:交通部
  • 主办单位:上海大学
  • 主编:周哲玮
  • 地址:上海市宝山区上大路99号上海大学122信箱
  • 邮编:200444
  • 邮箱:amm@department.shu.edu.cn
  • 电话:021-66135219 66165601
  • 国际标准刊号:ISSN:0253-4827
  • 国内统一刊号:ISSN:31-1650/O1
  • 邮发代号:
  • 获奖情况:
  • 上海市优秀科技期刊一等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,美国应用力学评论
  • 被引量:541