位置:成果数据库 > 期刊 > 期刊详情页
基于PCA的BP神经网络股票预测研究
  • ISSN号:1000-7180
  • 期刊名称:《微电子学与计算机》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]中北大学理学院,山西太原030051
  • 相关基金:2009年国家自然科学研究基金(60876077); 2009年山西省自然科学研究基金(2009011018-3)
中文摘要:

股票市场是国民经济发展变化的"晴雨表",股票价格的涨跌也是政治、经济、社会等诸多因素的综合反映.近几年来,神经网络取得较大发展已经成为热点研究并在各个领域中得到应用.文章基于主成分分析和BP神经网络,以中国石化100天股票历史技术指标数据作为训练样本对收盘价进行预测,20天数据进行检验,并通过图像仿真拟合来验证神经网络股票预测的可行性和准确性.

英文摘要:

The stock market is a "barometer" of the changes and development of national economic,the change of stock prices is also a reflection of comprehensive factors such as policics,economy economic and society.In recent years,neural network which has achieved greater development has become a hot research spot applied in various fields.In this paper,100 days' historical datas of Sinopec stock technical indicators as the training samples are used to predict the closing price and10 days' datas to test,which is based on principal component analysisand BP neural network.Finally,the feasibility and accuracy of neural network to predict the stock are verified by fitting the images.

同期刊论文项目
期刊论文 58 会议论文 11
同项目期刊论文
期刊信息
  • 《微电子学与计算机》
  • 中国科技核心期刊
  • 主管单位:中国航天科技集团公司
  • 主办单位:中国航天科技集团公司第九研究院第七七一研究所
  • 主编:李新龙
  • 地址:西安市雁塔区太白南路198号
  • 邮编:710065
  • 邮箱:mc771@163.com
  • 电话:029-82262687
  • 国际标准刊号:ISSN:1000-7180
  • 国内统一刊号:ISSN:61-1123/TN
  • 邮发代号:52-16
  • 获奖情况:
  • 航天优秀期刊,陕西省优秀期刊一等奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:17909