基于溶液法加工制备的聚合物太阳能电池的高温热稳定性是决定器件能否兼容后续高温热封装工艺,如热压封装、高温原子层沉积(ALD)等的一个关键。本文分别利用聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)和MoO3作为阳极缓冲层,以及ZnO和LiF作为阴极缓冲层,制备了结构为氧化铟锡(ITO)/阳极缓冲层/3-己基取代聚噻吩:(6,6)-苯基C61-丁酸甲酯(P3HT:PC61BM)/阴极缓冲层/Al的太阳能电池,系统地比较研究了不同界面缓冲材料对器件光电转换性能及稳定性的影响,特别是在高温煺火条件下器件的性能稳定性差异。结果表明,聚合物太阳能电池的热稳定性同器件的结构以及所用的缓冲层材料有密切的相关性。其中,利用MoO3及ZnO分别作为阳极与阴极界面修饰层的P3HT:PC61BM器件在120-150℃的温度范围内能够较好地保持器件的光电转换性能。这一结果为后续需要高温封装工艺的器件提供了有意义的结构优化指导。此外,研究结果还表明利用ZnO作为阴极缓冲层能够改善器件的长时间稳定性。
The high-temperature thermal stability of solution-processed polymer solar cel s is a key issue that determines the feasibility of further thermal encapsulation processes, such as thermal lamination or high-temperature atomic layer deposition. In this article, polymer solar cel s with poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) or MoO3 as the anode buffer layer (ABL) and ZnO or LiF as the cathode buffer layer (CBL) were fabricated with a device structure of indium tin oxide (ITO)/ABL/poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PC61BM)/CBL/Al. Device performances, especial y the high-temperature thermal stability of the devices, were studied in detail. The results indicated that the thermal stability of the organic solar cel s was highly dependent on the buffer layer material. Devices with MoO3 as ABL and ZnO as CBL showed high thermal stability at a temperature of 120-150 ℃, which ensures the possibility of subsequent thermal processing. In addition, the use of ZnO as the cathode buffer layer could also improve long-term device stability.