在这篇文章,参数的 Bayes 线性不偏的评价(BALUE ) 为划分线性模型被导出。在平常的最不方形的评估者(LSE ) 上的 BALUE 的优势以 Bayes 均方差矩阵(BMSEM ) 被学习标准和皮特曼亲密(PC ) 标准。
In this article, the Bayes linear unbiased estimation (BALUE) of parameters is derived for the partitioned linear model. The superiorities of the BALUE over ordinary least square estimator (LSE) are studied in terms of the Bayes mean square error matrix (BMSEM) criterion and Pitman closeness (PC) criterion.