运用Nevanlinna值分布的理论和方法,研究了微分方程f(k)+Ak-1 f(k-1)+…+A1 f ′+A0 f=0( k≥2)解的增长性,其中Aj(j=0,1,…,k-1)是亚纯函数,通过给定Aj 的不同条件,证明了齐次线性微分方程的任一非零解均为无穷级。
The growth of solutions of the differential equation f(k)+…+A0f =0(k≥2)is investigated by using the fundamental theory of Nevanlinna value distribution,where Aj(0 ≤ j ≤ k - 1)are meromorphic functions. It is proved that every nontrivial solution f of the equation is of infinite order with giving some different condition on Aj (0≤j≤k -1).