本文主要讨论一类具有时滞的奇异微分积分方程Ex(.t)=Ax(t)+f(t,x(t),x(t-r(t)))+∫tt-τg(t-s,x(s))ds,t≥t0,其中,[f(t,x,y)]+≤B[x]++L[y]+,[g(t-s,x(s))]+≤H(t-s)[x(s)]+。首先,阐述本文研究背景和意义,给出奇异微分积分方程指数稳定、Dini导数和M-矩阵的定义,以及一些必要的数学记号的含义。然后,利用分析技巧和方法并结合M-矩阵的性质,建立一个广义时滞微分积分不等式。最后,借助于建立的广义微分积分不等式,获得了含时滞的奇异微分积分方程零解全局指数稳定的一个充分条件,即当D∈M,D=[-A*+B+L+∫τ0H(s)ds],那么方程的零解是全局指数稳定的。
In this paper,a class of nonlinear singular integro-differential Equations with time delays is considered.Ex(t·)=Ax(t)+f(t,x(t),x(t-r(t)))+∫tt-τg(t-s,x(s)) ds,t≥t0,where,[f(t,x,y)]+≤B[x]++L[y]+,[g(t-s,x(s))]+≤H(t-s)+.Firstly,the background and significance are disussed in this paper,singular differential integral equation exponential stability,Dini derivative and M-matrix,and some necessary mathematics mark are given.Then,using the analysis techniques and methods and properties of M-matrix and to establish a generalized delay differential inequality.Finally,the establishment by generalized differential inequality,a sufficient condition of singular delay differential integral equations global exponential stability is obtained.This isD∈M,D=-(A*+B+L+∫τ0H(s)ds).So the zero solution of this equation is global exponential stability.