利用一类迭代函数方程在递增情况下存在递增解和一类迭代函数方程在递增情况下存在递减迭代根,讨论了迭代函数方程λ1 f(x)+λ2 f 3(x)+…+λn f 2n-1(x)=F(x)(其中F(x)为单调递减连续函数)的解的存在情况,并简单的讨论了其解的一个性质.
Based on that ascending solutions exist in a class of iterative function equations under the ascending condition and that descending iterative roots exist in a class of iterative function equations under ascending condition, this paper discusses the conditions for the existence of the solutions to the iterative function equation A f( x) + Azf3 ( x) +... + Anf2n-1 ( x) -- F( x) , here F(x) is monotonically descending continuous function, and simply discusses a property of its solution.