采用密度泛函理论结合准谐德拜模型研究常压下300~725 K间KNO2立方结构的热力学性质,重点分析常压下定压热容、定容热容、熵、德拜温度、体膨胀系数、平衡体积和体弹模量随温度的变化.结果显示,常压下计算的定压热容随温度的变化与实验数据符合较好,而计算的熵与实验数据相差较大.计算得到KNO2的平均体膨胀系数约为1.837 8×10-5K-1,常温下(300 K)KNO2的德拜温度约为667.13K.
To understand performance of molten salt heat transfer and thermal storage in solar thermal power system, thermodynamic properties of cubic KNOz under atmospheric pressure and temperatures between 300 and 725 K are studied with density functional theory combined with a quasi-harmonic Debye model. Temperature dependence of isobaric heat capacity, isochoric heat capacity, entropy, Debye temperature, volume thermal expansion coefficient, equilibrium volumes and bulk modulus under ambient pressure are calculated. It shows that calculated isobaric heat capacities are in good agreement with experiments under ambient pressures. Both entropy vary greatly. The average volume thermal expansion coefficient-is 1. 837 8×10^-5K^-1 and Debye temperature is 667.13K at ambient temperatures, respectively.