位置:成果数据库 > 期刊 > 期刊详情页
改进的基于Facet模型的亚像素边缘检测
  • ISSN号:1005-0930
  • 期刊名称:《应用基础与工程科学学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]重庆大学光电技术及系统教育部重点实验室ICT研究中心,重庆400044, [2]重庆大学数理学院,重庆400044
  • 相关基金:国家自然科学基金(No.60672098);重庆市科技计划攻关项目(CSTC2006AB3027);教育都春晖计划项目(Z2005-2-63001)
中文摘要:

在图像测量等工程应用中,需要获得目标的高精度图像边缘信息.本文首先介绍了一种基于Facet模型的亚像素边缘检测算法,该方法具有抗噪能力强,定位精度高等优点,但是计算复杂度太高.针对此缺点,本文研究了一种改进算法,将其与Mallat的小波变换模极大算法有效的结合,不仅处理速度提高了10倍左右,而且所提取的边缘效果也有所改善.实验结果表明,本文的方法不仅能获得高精度的边缘信息,抗噪能力强,而且处理速度快.

英文摘要:

In the applications such as image measurement, edge information in high accuracy of the object is required. First, a sub-pixel edge detection method based on Facet model is introduced, the method can reduce noise and achieve high accuracy, but its computational complexity is too high. Aimed at making up this disadvantage, we studied an improved method, which combined the Facet model and MaUat' s maximum wavelet module approach effectively. The wavelet method is used to extract wide preparatory edge, while restrain some noise. Then the method based on Facet model merely processes preparatory edge points and further obtains sub-pixel edge. Experiments show that the improved method not only increases the speed of Facet model about 10 times, but also provides more continue accurate edge and reduces noise.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《应用基础与工程科学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国自然资源学会
  • 主编:倪晋仁
  • 地址:北京大学环境大楼312室
  • 邮编:100871
  • 邮箱:jbse@iee.pku.edu.cn
  • 电话:010-62753153
  • 国际标准刊号:ISSN:1005-0930
  • 国内统一刊号:ISSN:11-3242/TB
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,中国中国科技核心期刊,中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:7313