通过对永磁体辅助下单畴GdBCO超导体和圆柱形永磁体在液氮温度、零场冷、轴对称情况下磁悬浮力的测量,研究了两种不同组态下辅助永磁体对超导体磁悬浮力特性的影响.实验结果表明,当长方体辅助永磁体水平磁化、且磁极N指向超导体时,超导体的最大磁悬浮力从没有引入辅助永磁体的29.8N增加到61.5N,增加为没有引入辅助永磁体时的206%.当长方体辅助永磁体的N极与圆柱形永磁体的N极反平行时,超导体的最大磁悬浮力从没有引入辅助永磁体的29.8N减小到19.6N,减小为无辅助永磁体时的65.8%.这些研究结果说明,通过科学合理地设计超导体和永磁体的组合方式,能有效地提高超导体的磁悬浮力.该研究结果对促进超导体的应用具有重要的指导意义.
Effects of additional permanent magnet on the levitation force of a single domain GdBCO bulk superconductor have been investigated with a cylindrical permanent magnet in their coaxial configuration under zero field cooled state at liquid nitrogen temperature. The magnetic polarity N of cylindrical permanent magnet is pointed to the GdBCO bulk superconductor,and the two additional permanent magnet of rectangular parallelepiped shape are fixed on two sides of the GdBCO bulk superconductor in different arrangments. It was found that the levitation force can be improved to about 61. 5 N,which is more than 2 times higher than that (29. 8 N) of the system without the additional permanent magnet,when the magnetic polarity N of two additional permanent magnets points to the GdBCO bulk superconductor in horizontal direction. The levitation force is reduced to 19. 6N,which is about 65. 8% of the levitation force 29. 8N of the system without the additional permanent magnets, when the magnetic polarity N of two additional permanent magnet are antiparallel to the magnetic polarity N of the cylindrical permanent magnet. The results indicate that the levitation force of high temperature bulk superconductors can be effectively improved by introducing additional permanent magnet based on reasonably designing the system configuration,which is very important during the practical design and applications of superconducting magnetic levitation systems.