位置:成果数据库 > 期刊 > 期刊详情页
地理空间分析与制图的数据整合策略和方法
  • ISSN号:1560-8999
  • 期刊名称:《地球信息科学学报》
  • 时间:0
  • 分类:P208[天文地球—地图制图学与地理信息工程;天文地球—测绘科学与技术]
  • 作者机构:[1]南京师范大学地理信息科学江苏省重点实验室,南京210097, [2]南通大学地理科学学院,南通226007
  • 相关基金:国家自然科学基金(40271089),南京师范大学重点科研项目(2004105XGQ2B55).
中文摘要:

地理信息系统(GIS)的地学分析与计算机地图制图(CAC)是地理空间数据应用不可分割的两个方面。但GIS与CAC在地理空间数据的需求上存在冲突,导致两者间数据无法充分共享.直接造成数据的重复采集和浪费。本文从数据、软件系统和地图符号库的综合实施方案出发.初步探讨了地理空间数据整合的策略与方法。研究结果表明,基于辅助线的传统整合方法极大地增加了地理数据建库与更新的难度.而将人工智能技术、专家系统与主制图型或者主分析型数据方案结合起来.才有助于实现GIS与CAC存数据及系统功能上的真正融合。

英文摘要:

The analytic function of GIS and the cartographic function of Computer assisted cartography (CAC) are two aspects of geographic spatial data application. The conflict, which exists between GIS and CAC, comes from several different aspects including spatial positions, attributes and relations of geographical objects, and prevents their data from sharing. It usually makes geographic spatial data recollected and wasted. Beginning with a general method that thinks about data, software system and cartographic symbol database at the same time, this paper basically discusses the strategy and methods of geographic spatial data integration. The result of the research indicates that the traditional integration method based on assistant curve makes it more difficult to build and renew geographic database. In this paper, two main methods are put forward that consist of data integration based cartography and data integration based analysis. Compared with the cartographic style, the analytic style has some advantages, such as easily collecting, mapping and analyzing, simple spatial relation and integrated object entitles, so it is obviously more available for geographic analysis and cartography. The research on the strategies of geographic spatial data integration will help to syncretize GIS and CAC by combining artificial intelligence and expert system with data integration scheme.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《地球信息科学学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院地理科学与资源研究所 中国地理学会
  • 主编:徐冠华
  • 地址:北京大屯路甲11号
  • 邮编:100101
  • 邮箱:sxfu@lreis.ac.cn
  • 电话:010-64888891
  • 国际标准刊号:ISSN:1560-8999
  • 国内统一刊号:ISSN:11-5809/P
  • 邮发代号:82-919
  • 获奖情况:
  • 国内外数据库收录:
  • 中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:3181