利用经典的系数分析方法导出了一类广义超几何多项式: q + 1 Fq [ -n,n + a1 ,n + a2 ,…,n + aq-1 ,aq ; n + b1 ,n + b2 ,…,n + bq-1 ,-n + bq ; z ] 零点的渐近分布。进一步借助于EnestromKakeya 定理,得到了其零点沿不同方向渐近趋于单位圆周的充分条件。
The approach to analysis of coefficients is used to analyze the asymptotic distribution of zeros of a certain class of generalized hypergeometric polynomials: q + 1 Fq [ -n,n + a1 ,n + a2 ,…,n + aq-1 ,aq ; n + b1 ,n + b2 ,…,n + bq-1 ,-n + bq ; z ] Owing to the EnestromKakeya Theorem, some sufficient conditions about clustering of zeros on certain curves along different directions are obtained.