依照随机变量变换可以重新参数化的思想,得到了一种加权指数分布总体在具有缺失数据情况下参数的极大似然估计,利用中心极限定理和相关的极限理论,证明了这种估计量的强相合性和渐近正态性。
By the ideal to transform expression of the random variable that one can do reparametrization for the old parameter in distribution,This paper gets the maximum likelihood estimation for the weighted exponential distributions with missing data.Further,using the limiting theory relating to the central limit theorem,the strong consistency and asymptotic normality of the estimation are also proved.