在Moor-Shannon网络模型中,k限制边连通度较大的网络一般有较好的可靠性和容错性.本文在无向Kautz图UK(2,n)中研究k限制边连通度的上界ξk,证明了ξ5(UK(2,3))=6,ξ5(UK(2,n)) =8,n≥4,且当4≤k≤n时,ξk(UK(2,n))≤2(k-「k/3」).
For Moor-Shannon network models, the greater the k-restricted edge connectivity is, the better the reliability and fault-tolerance is. In this paper, we study the upper bound ξk of the k-restricted edge connectivity in the undirected Kautz graph UK(2, n) and show that ξ5(UK(2,3))=6,ξ5(UK(2,n)) =8,n≥4, and ξk(UK(2,n))≤2(k-「k/3」)for4≤k≤n.