利用射频反应磁控溅射设备在不同N2分压下制备了Zr-Si-N纳米复合薄膜。研究了N2分压对薄膜组织和性能的影响。结果表明:随着N2分压的增加,薄膜中Zr、Si元素含量比降低,且薄膜方电阻增加;Zr-Si-N薄膜的微观组织由纳米晶ZrN嵌入SiNx非晶基体构成,在低N2分压条件下,有少量Zr2Si形成。Zr2Si的形成与低N反应活性相关。在0.03PaN2分压条件下,Zr-Si—N薄膜硬度达到22.5GPa的最大值。高N2分压制备薄膜硬度较低可能与Si原子造成的晶格畸变相关。
Zr-Si-N films were prepared by radio frequency powered reactive magnetron sputtering at different N2 partial pressures. The influences of N2 partial pressure on the microstructure and properties of Zr-Si-N films were studied. The results reveal that the Zr/Si ratio decreases and the sheet resistance increases as the N2 partial pressure increases. The microstructures of Zr-Si-N films are composed of nano-crystallite ZrN embedded into amorphous matrix of SiNx phase and a small quantity of Zr2Si produced at low N2 partial pressure. The appearance of Zr2Si phase is related to the low nitridation level. The microhardness of Zr-Si-N film decreases with the increase of N2 partial pressure at the N2 partial pressure of 0.03 Pa, the microhardness of Zr-Si-N films is possessed of maximum value of about 22.5 GPa. The phenomenon that high N2 partial pressure results in low microhardness in Zr-Si-N films may be related to the lattice distortion induced by the addition of Si.