-个r-图是-个无环的无向图,其中任何两个顶点之间至多被r条边连接.-个m+1个顶点的r-完全图,记为K(τ)m+1,是-个m+1个顶点的r-图,其中任何两个顶点之间恰好被r条边连接.-个非增的非负整数序列π=(d1,d2,…,dn)称为是r-可图的如果它是某个n个顶点的r-图的度序列,一个r-可图序列π称为是蕴含(强迫)K(τ)m+1-可图的如果π有-个实现包含K(τ)m+1作为子图(π的每-个实现包含K(τ)m+1作为子图).设σ(K(τ)m+1,n))(τK(τ)m+1,n))表示最小的偶整数t,使得每-个r-可图序列π=(d1,d2…,dn)具有∑i=1ndi≥t是蕴含(强迫)K(τ)m+1-可图的.易见σ(K(τ)m+1,n)是Erdos等人的-个猜想从1-图到r-图的扩充且τK(τ)m+1,n)是经典Turan定理从1-图到r-图的扩充.本文给出了蕴含K(τ)m+1,n)的r-可图序列的两个简单充分条件.此两个条件包含了Yin和Li在[Discrete Math.,2005,301:218—227]中的两个主要结果和当n≥max{m2+3m+1-[m2+m/τ],2m+1+[m/τ]}时,σ(K(τ)m+1,n)之值.此外,我们还确定了当n≥m+1时,τK(τ)m+1,n)之值。
An r-graph is a loopless undirected graph in which no two vertices are joined by more than r edges. An r-complete graph on m + 1 vertices, denoted by K(τ)m+1, is an r-graph on m + 1 vertices in which each pair of vertices is joined by exactly r edges. A non-increasing sequence π = (d1, d2,..., dn) of nonnegative integers is said to be r-graphic if it is the degree sequence of some r-graph on n vertices. An r-graphic sequence π is said to be potentially (resp. forcibly) K(τ)m+1-graphic if π has a realization containing K(τ)m+1 as a subgraph (resp. every realization of π contains K(τ)m+1 as a subgraph). Let σ( K(τ)m+1, n) (resp. K(τ)m+1, n)) denote the smallest even integer t n such that each r-graphic sequence π = (d1, d2,..., dn) with ∑i=1ndi≥ t is potentially (resp. forcibly) K(τ)m+1-graphic. Clearly,σ( K(τ)m+1, n) is an extension from 1-graph to r-graph of a conjecture due to Erdos et al and τ(K(τ)m+1,n) is an extension from 1-graph to r-graph of the classical Turan's theorem. In this paper, we give two simple sufficient conditions for an r-graphic sequence to be potentially K(τ)m+1-graphic, which imply two main results due to Yin and Li (Discrete Math., 2005, 301: 218-227) and the value of σ(K(τ)m+1, n) for n 〉 max{m2+3m+1-[m2+m/τ],2m+1+[m/τ]}. Moreover, we also determine the value of τ(K(τ)m+1, n) for n 〉 m + 1.