位置:成果数据库 > 期刊 > 期刊详情页
Green Function and Perturbation Method for Dissipative Systems Based on Biorthogonal Basis
  • 期刊名称:Commun. Theor. Phys. (Beijing, China)
  • 时间:0
  • 页码:1017-1022
  • 语言:中文
  • 分类:O441.4[理学—电磁学;理学—物理] V475.1[航空宇航科学与技术—飞行器设计;航空宇航科学技术]
  • 作者机构:[1]School of Physics, Northeast Normal University, Changchun 130024, China, [2]College of Applied Sciences, Beijing University of Technology, Beijing 100124, China, [3]Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130024, China
  • 相关基金:Supported by National Natural Science Foundation of China under Grant Nos. 10647108, 10547101, and 10604002, and the National Fundamental Research Program of China under Grant No. 2006CB921200 We thank C.P. Sun for his sincerely discussions.
  • 相关项目:约瑟夫森结量子比特量子退相干问题的理论研究
中文摘要:

把直角的基础基于双性人的途径,我们执行为开的系统的一个类的扩大与出去的波浪边界条件由波浪方程描述了的伪正常模式(QNM ) 。为如此的一个 non-Hermitian 系统,特徵函数不安扩大和格林功能方法,为关上的量系统基于 Hermitian Hamiltonian 的直角的特徵向量,能以双性人被概括直角的基础, H 和它的伴随海角 H 的特徵函数的二个集合。为复杂频率的时间无关的不安理论能也被开发。

英文摘要:

Based on the approach of biorthogonal basis, we carry out the quasinormal modes (QNMs) expansions for a class of open systems described by the wave equation with outgoing wave boundary conditions. For such a non-Hermitian system, the eigenfunction perturbation expansions and Green function method, which are based on the orthogonal eigenvectors of the Hermitian Hamiltonian for the dosed quantum system, can be generalized in terms of the biorthogonal basis, the two sets of eigenfunctions of H and its adjointness H . The time-independent perturbation theory for the complex frequencies can be also developed.

同期刊论文项目
同项目期刊论文