当一个波色子与另外一个交往形成一个合成系统与时那么(3 ) 动态对称,在那里存在,这被显示出使 q 变形的 bosonic 刺激令人满意在伪古典的限制的使 q 变形的海森堡交换关系尖动量 j 为(3 ) 那么大,然而并非无限。在第二量子化,这伪刺激与波色子实现被联系(3 ) 那么躺着代数学。身体上,使 q 变形的刺激的现象能发生在量动力学的许多模型,例如从在一个陷井的许多相同二水平的原子,在海森堡链的旋转波浪,高旋转领前和鲍斯·爱因斯坦原子的协调产量的一个系统的超级排放。特别,在这些模型,,变丑参数 q 由保守数量内在地是明确的,例如全部的原子序数和尖动量。
When a boson interacts with another to form a composite system with SO(3) dynamic symmetry, it is shown that there exists the q-deformed 5osonic excitation satisfying the q-deformed Heisenberg commutation relation in the quasi-classical limit that the angular momentum j for SO(3) is large, but not infinite. In second quantization this quasi-excitation is associated with the boson realization of SO(3) Lie algebra. Physically, the phenomena of q-deformed excitation can happen in many models of quantum dynamics, such as super emission from a system of many identical two-level atoms, the spin wave in Heisenberg chain, the high spin precession and the coherent output of Bose-Einstein atoms in a trap. Especially, in these models, the deformation parameter q is well defined intrinsically by a conservative quantity, such as the total atomic number and the angular momentum.