位置:成果数据库 > 期刊 > 期刊详情页
基于小波域分层Markov模型的纹理分割
  • ISSN号:1671-8860
  • 期刊名称:《武汉大学学报:信息科学版》
  • 时间:0
  • 分类:P237.4[天文地球—摄影测量与遥感;天文地球—测绘科学与技术] TP753[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]武汉大学测绘遥感信息工程国家重点实验室,武汉市珞喻路129号,430079, [2]长沙理工大学计算机与通信工程学院,长沙市赤岭路45号,410076, [3]华中科技大学控制科学与工程系,武汉市珞喻路1037号,430074
  • 相关基金:国家973计划资助项目(2006CB701303);优秀国家重点实验室基金资助项目(40523005).
中文摘要:

提出了一种新的小波域分层Markov模型。该模型使用高斯马尔可夫随机场(Gauss Markov randomfield,GMRF)模型描述每一尺度小波系数向量的分布,考虑了同一尺度特征之间的相互作用;利用尺度间的因果马尔可夫随机场(Markov random field,MRF)模型和尺度内的非因果MRF模型来描述标记场的局部作用关系,以此确定标记场的先验信息。根据贝叶斯准则,利用多目标问题优化技术,给出了此模型相应的纹理分割算法。最后,与经典模型的分割算法进行了对比实验,验证了所提出算法的有效性。

英文摘要:

A new hierarchical Markov model in wav.elet domain was proposed. In this model, the Gauss Markov random field(GMRF) was used to model the distribution of wavelet coefficient vectors to describe the relationship of observed features on each scale, and the cooperation of interscale casual. Innnerscale non casual Markov Random Fields was exploited to model the label field priori probability. Based on the Bayesian rules, a new textured image segmentation algorithm was proposed employing multi-objective problem solving technique in this new hierarchical model. Experiments with synthetic texture images and remote sensing images were carried out. The results show the abilities of the proposed method to reduce segmentation error rate.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《武汉大学学报:信息科学版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:武汉大学
  • 主编:刘经南
  • 地址:湖北武汉珞珈山
  • 邮编:430072
  • 邮箱:whuxxb@vip.163
  • 电话:027-68778045
  • 国际标准刊号:ISSN:1671-8860
  • 国内统一刊号:ISSN:42-1676/TN
  • 邮发代号:38-317
  • 获奖情况:
  • 全国优秀科技期刊,全国优秀高校自然科学学报一等奖,湖北省优秀期刊称号
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰地学数据库,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24217