位置:成果数据库 > 期刊 > 期刊详情页
PSO—RBF应用于航空和卫星遥感影像的纹理分类
  • ISSN号:1671-8860
  • 期刊名称:《武汉大学学报:信息科学版》
  • 时间:0
  • 分类:P237.3[天文地球—摄影测量与遥感;天文地球—测绘科学与技术]
  • 作者机构:[1]武汉大学遥感信息工程学院,武汉市珞喻路129号 430079, [2]武汉大学测绘遥感信息工程国家重点实验室,武汉市珞喻路129号 430079
  • 相关基金:国家自然科学基金资助项目(40523005).
中文摘要:

粒子群优化算法(PSO)是基于群体智能的新型进化计算技术,将核函数参数选取问题转换为优化问题,用PSO来进行处理,并将PSO与RBF联合(PSO-RBF)应用于航空和卫星遥感影像的纹理分类,实验结果验证了此方法的有效性。

英文摘要:

Particle swarm optimization (PSO) is a new evolutionary computing technique which is based on swarm intelligence. Kernel function parameter selection problem is transformed into the optimization problem and PSO is used to get the optimal kernel function parameters. The combined algorithm of PSO and RBF (PSO-RBF) is applied to aerial and satellite remote sensing image texture classification. The experimental results show that the proposed method is effective.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《武汉大学学报:信息科学版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:武汉大学
  • 主编:刘经南
  • 地址:湖北武汉珞珈山
  • 邮编:430072
  • 邮箱:whuxxb@vip.163
  • 电话:027-68778045
  • 国际标准刊号:ISSN:1671-8860
  • 国内统一刊号:ISSN:42-1676/TN
  • 邮发代号:38-317
  • 获奖情况:
  • 全国优秀科技期刊,全国优秀高校自然科学学报一等奖,湖北省优秀期刊称号
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰地学数据库,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24217