设A=(nij)∈Cn×n,若存在a∈(0,1),使Vi∈N,有|aij|≥Ria(A)Si1-a(A)成立,则称A为a链对角占优矩阵。利用r链对角占优矩阵、不可约r链对角占优矩阵、广义严格a-链对角占优矩阵等概念及性质,给出了非奇异H-矩阵的一个简捷判别定理。从而改进和推广了相应的一些结果,并给出相应的数值例子说明结果的有效性。
Let A=(nij)∈Cn×n, if there exists a∈(0,1) which can make |aij|≥Ria(A)Si1-a(A) be right for Vi∈N={1,2, ..,N}, then A is called a a chain diagonally dominant matrix. By using concepts and properties of the a chain diagonally dominant matrices~ irreducible a chain diagonally dominant matrices and generalized strictly a chain diagonally dominant matrices, some sufficient conditions for a matrix to be a nonsingular H-matrix were given. The results obtained improve the known corresponding results. At last a numerical example is given for illustrating advantage of result.