当起始的数据是小的时,这篇论文在 2-dimensional Riemannian manifolds 上与边界反馈认为半的全球光滑的解决方案的存在是线性 schrödinger 方程。作者证明全球答案的存在边界反馈取决于不仅,而且在一个 Riemannian 度量标准上,由原则部分和原来的度量标准的系数给歧管。特别地, authers 证明系统的精力指数地腐烂。
This paper considers the existence of global smooth solutions of semilinear schrSdinger equation with a boundary feedback on 2-dimensional Riemannian manifolds when initial data are small. The authors show that the existence of global solutions depends not only on the boundary feedback, but also on a Riemannian metric, given by the coefficient of the principle part and the original metric of the manifold. In particular, the authers prove that the energy of the system decays exponentially.