位置:成果数据库 > 期刊 > 期刊详情页
基于前向后向算子分裂的稀疏信号重构
  • ISSN号:0469-5097
  • 期刊名称:《南京大学学报:自然科学版》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京航空航天大学计算机科学与工程系,南京210016, [2]华侨大学计算机科学与技术学院,厦门361021
  • 相关基金:国家自然科学基金(60973097)
作者: 谢志鹏[1,2]
中文摘要:

压缩感知包括压缩采样与稀疏重构.压缩采样突破了传统的香农采样定理限制,降低了采集数据量,是新兴的信号采集方法.稀疏重构算法是恢复原始高维信号的关键步骤,已成为信号处理及相关领域的研究热点.设计了一种稀疏重构算法FPSP3,该算法包含3个要素:不动点迭代,SPG2非单调线搜索及热启动技术.将非光滑L1范数罚最小二乘的最优解表示为梯度算子与次微分算子和的零点,采用前向后向算子分裂法推导出最优解方程为包括前向梯度步与后向邻近步的不动点迭代,通过证明后向邻近步对应L1范数的邻近算子即软阈值收缩,从而将不动点迭代表示为梯度下降与软阈值收缩.通过证明梯度算子逆是强单调的从而简化了收敛步长分析,给出了不动点迭代线性收敛于最优解的简要证明.采用SPG2非单调线搜索与热启动技术显著加快了算法实际运行速率,在稀疏重构实验中与某些著名的L1范数方法进行了比较,结果表明FPSP3具有运算速度与重构精度优势.

英文摘要:

Compressive sensing consists of compressive sampling and sparse reconstruction. Compressive sampling breaks through the limitation of traditional Shannon sampling theorem, reduces the acquisition data amount hence becoming an emerging method for data acquisition. Sparse reconstruction algorithm is the key step for successfully recovering the original data in high dimension and has become the hot research topic in signal processing and related area. In this paper, an sparse recovery algorithm is designed and named FPSP3, which includes three key components: fixed point iteration, non-monotone line search SPG2 and warm start skill. The optimal solution of LI norm penalized Least Square problem is represented as the zero point of sum of gradient and sub-differential operator, and forward backward operator splitting method is used to derive the optimal solution' s fixed pointiteration, which consists of forward gradient and backward proximal step. The proof of backward proximal step corresponding to the proximity operator of L1 norm, namely soft thresholding shrinkage, demonstrates that fixed point iteration can be implemented by gradient descent and soft thresholding. The analysis for convergent step size condition is simplified by proving the strong monotonicity of inverse of gradient operator. The brief proof is given to illustrate the fixed point iteration converges in linear rate to the optimal solution. The introduction of non-monotone line search SPG2 and warm start skill significantly accelerate the practical efficiency of proposed algorithm. Comparisons are made in sparse recovery experiments with some state of the art L1 norm methods, which demonstrates the advantages of running time and recovering accuracy of FPSP3.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《南京大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:南京大学
  • 主编:龚昌德
  • 地址:南京汉口路22号南京大学(自然科学版)编辑部
  • 邮编:210093
  • 邮箱:xbnse@netra.nju.edu.cn
  • 电话:025-83592704
  • 国际标准刊号:ISSN:0469-5097
  • 国内统一刊号:ISSN:32-1169/N
  • 邮发代号:28-25
  • 获奖情况:
  • 中国自然科学核心期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9316