位置:成果数据库 > 期刊 > 期刊详情页
基于局部性正则化推广误差界的特征选择算法
  • ISSN号:1003-6059
  • 期刊名称:模式识别与人工智能
  • 时间:0
  • 页码:473-478
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]东南大学计算机科学与工程学院,南京210096, [2]南京航空航天大学计算机科学与技术学院,南京210016
  • 相关基金:国家自签科学基金项目(N0.60773061,60973097,60905002)、江苏省自然科学基金项目(N0.BK2008381)资助
  • 相关项目:判别性正则化技术及其在半监督学习中的拓展研究
作者: 薛晖|陈松灿|
中文摘要:

特征选择是当前模式识别领域的研究热点.滤波方法和封装方法是特征选择算法中评价特征子集的两种主要策略,但均不能保证其后所设计的分类器的推广性能.针对以上两种策略的不足,首先引入基于样本流形结构的局部性正则化推广误差界.并在此基础上,以局部性正则化推广误差界为评价函数,以局部性正则化分类方法为目标分类器,提出一种混合滤波一封装型特征选择算法.该算法既保持了较高的计算效率,又保证了目标分类器良好的推广性.实验结果表明,新算法具有比对比算法更优的分类性能.

英文摘要:

Feature selection is a hot topic in current pattern recognition. Filter and wrapper approaches are two of the most important policies to evaluate feature subsets in feature selection algorithms. However, they both can not guarantee the generalization performance of the following designed classifier. To solve these problems in the two approaches, a locality regularized generalization error bound is firstly introduced which embeds the manifold structure information hidden in the input samples. Furthermore, a hybrid filter- wrapper feature selection algorithm is proposed, which uses the locality regularized generalization error bound as the evaluation function as well as the locality regularization method as the classifier. As a result, the proposed algorithm can not only keep high computational efficiency, but also guarantee the good generalization performance of the following classifier. Experimental results validate the superiority of the algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169