位置:成果数据库 > 期刊 > 期刊详情页
加权Laplacian分类器
  • ISSN号:0469-5097
  • 期刊名称:《南京大学学报:自然科学版》
  • 时间:0
  • 分类:O157.5[理学—数学;理学—基础数学]
  • 作者机构:[1]南京航空航天大学计算机科学与技术学院,南京210016
  • 相关基金:国家自然科学基金(60973097)
中文摘要:

传统的Laplacian分类器通过Parzen窗估计概率密度函数,而后基于CauchySchwarz散度(Cauchy-SchwarzDivergence,CSD)定义分类准则进行分类,主要强调了小概率类别,致使对较高概率的类的分类效果较一般.针对此,提出了一个改进方法.关键是对小样本类用加权代替无权的Parzen窗概率密度估计,并用CSD作为代价函数优化相应的权值,而后依据Laplacian分类准则设计出加权Laplacian分类器(WeightedLaplacianClassifier,WLC).在所用测试数据集,尤其是不平衡数据集上的实验表明,WLC的结果明显优于Lapalcian分类器.

英文摘要:

The traditional Laplacian Classifier proposed to classify the datasets is derived from Cauchy-Schwarz divergence(CSD) using Parzen window. The classification rule is expressed in terms of a weighted kernel expansion. The weighting associated with a data point is inversely proportional to the probability density at that point, emphasizing the least probable regions, which makes the classification result of the other regions not so well. Against this problem, we proposed a new classifier to improve it, named the weighted Laplacian classifier (WLC). The classifier uses the weighted Parzen window which is used to estimate the probability density functions (pdf) on the small sample class, and the CSD is used as the cost function to optimal the weight. Besides, the quadratic programming is used as the optimal method to optimal the weight. Then the weighted classifier is designed according to the Laplacian classification rule. The classification cost function measures the angle between class mean vectors in the kernel feature space, the test data is classified to the smaller angle between the two datasets in the feature space. According to the experiment on toy dataset and the real dataset, the final experiment result shows that WLC is better than the Laplacian classifier's on the test datasets, especially on the imbalance datasets.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《南京大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:南京大学
  • 主编:龚昌德
  • 地址:南京汉口路22号南京大学(自然科学版)编辑部
  • 邮编:210093
  • 邮箱:xbnse@netra.nju.edu.cn
  • 电话:025-83592704
  • 国际标准刊号:ISSN:0469-5097
  • 国内统一刊号:ISSN:32-1169/N
  • 邮发代号:28-25
  • 获奖情况:
  • 中国自然科学核心期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9316