位置:成果数据库 > 期刊 > 期刊详情页
提高Eclat算法效率的策略
  • ISSN号:1008-973X
  • 期刊名称:《浙江大学学报:工学版》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]浙江大学CAD&CG;国家重点实验室,浙江杭州310027
  • 相关基金:国家自然科学基金资助项目(51175455); 浙江省自然科学基金资助项目(Y1100257)
中文摘要:

为了提高Eclat算法的效率,从剪枝、项集连接和交叉计数3方面对Eclat算法进行优化.将后缀相同的项集归为一个等价类,使剪枝更充分,剪枝时引入双层哈希表加快搜索候选项集子集的速度;提出项集集合划分链表,以减少项集连接过程中比较判断的环节;提出事务标识(Tid)失去阈值,以加快交叉计数的速度.在此基础上提出一种优化的Eclat_opt算法(ZAKI),把它与Eclat原算法以及其他2种Eclat改进算法Diffset(ZAKI),hEclat(熊忠阳)进行对比实验的结果表明,Eclat_opt算法的效率在稀疏数据集上最高,总体时间性能最好.

英文摘要:

For the purpose.of efficiency improvement, Eclat algorithm was optimized in three aspectspruning, itemsets connection and intersection. Firstly, the equivalence classes were divided in the suffixbased way to make the best of pruning in which a double layer hash table was utilized to accelerate the search process of subsets of candidate itemsets. Secondly, a partition list of the set of itemsets was presented to eliminate the connection judgment of itemsets. Finally, a transaction id (Tid) lost threshold was introduced to speed up intersection. Based on the above three improvement strategies an Eclat_opt algorithm was proposed. The performance comparison between the Eclat_opt algorithm, the original Eclat algorithm (ZAKI) and two other improved Eclat algorithms Diffset(ZAKI), hEclat (XIONG Zhong-yang) showed that the efficiency of the Eclat_opt algorithm ranked the first among the four algorithms on sparse datasets, and its overall time performance was the best.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《浙江大学学报:工学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:浙江大学
  • 主编:岑可法
  • 地址:杭州市浙大路38号
  • 邮编:310027
  • 邮箱:xbgkb@zju.edu.cn
  • 电话:0571-87952273
  • 国际标准刊号:ISSN:1008-973X
  • 国内统一刊号:ISSN:33-1245/T
  • 邮发代号:32-40
  • 获奖情况:
  • 2000年获浙江省科技期刊质量评比二等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:21198