为了研究涡轮缩放型流道动叶中尾缘燕尾型激波与叶片吸力面相互作用对气膜冷却的影响,本文对不同转速和不同吹风比下无导叶对转涡轮高压动叶吸力面上激波与二次流对冷却流动及壁面静温的影响进行了数值研究。冷却孔位于高压动叶吸力面约30%轴向弦长处,沿叶高均布。共模拟了三种转速(高压动叶),分别为5460r/min、6970r/min和7800r/min;在每个转速下分别模拟了两种不同冷却气流进口速度,分别为10m/s和20m/s。从模拟结果可见,高压动叶吸力面上静温过激波作用位置后会有明显的上升,且在不同工况和不同冷却条件下静温升的大小存在差异。在高压动叶吸力面两端,冷却效果下降明显,二次流成为影响气膜冷却的主导因素,尤其是在叶片顶部。
Detailed numerical simulations have been carried out to investigate the influence of the fishtail shock and its echo wave on the suction surface film cooling in a vaneless counter rotating turbine convergent-divergent-nozzle rotor at different rotating speeds and blowing ratios.At about 30%axial chord length,a row of cooling holes is evenly distributed along the span.The secondary flow and static temperature on the high pressure rotor suction surface are analyzed at three different rotating speeds of the high pressure turbine stage(5460 r/min,6970 r/min and 7800 r/min respectively) and two different cooling flow velocities(10 m/s and 20 m/s respectively).From the results we can found that,on the suction surface,the static temperature will rise over the location of the shock systems impinging against,and under the different condition,the magnitude of the temperature rise is different.On the both ends of the high pressure rotor suction surface near the trailing edge,the cooling effectiveness declines,especially on the top end,which is mainly led to by the secondary flow there.