位置:成果数据库 > 期刊 > 期刊详情页
顾及结构特征的多层次马尔科夫随机场模型在影像分类中的应用
  • ISSN号:1671-8860
  • 期刊名称:《武汉大学学报:信息科学版》
  • 时间:0
  • 分类:P237.4[天文地球—摄影测量与遥感;天文地球—测绘科学与技术] TP753[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]武汉大学电子信息学院,湖北武汉430072, [2]安阳师范学院计算机与信息工程学院,河南安阳455002
  • 相关基金:国家自然科学基金资助项目(40971219,41001251).
中文摘要:

针对基于像素或基于区域的马尔科夫随机场(Markov random field,MRF)模型仅能描述单一层次影像数据特性的局限,提出了一种综合像素和区域特性的多层次MRF模型,以提高MRF模型表达遥感数据层次特性的能力。为利用高分辨率遥感影像几何结构信息来提高不同地物的可区分性,提出了一种描述地物结构特性的形状特征,用于区分光谱特性相似的不同地物。本文的分类算法包括两个过程:首先,基于像素和区域特征,采用多层次MRF模型进行初始分类;然后,基于形状特征采用SVM对第一步分类结果中易混淆的地物进行分类。根据不同地物采用合适特征量描述可在特征空间中增加可区分性的事实,采用形状特征对基于层次MRF模型的错分类别进行再分类可有效改善分类精度。同现有基于单一层次的方法相比,实验结果表明该算法的分类性能有了明显的改善。

英文摘要:

In order to unitize the image information at different level, this paper introduces a novel approach to integrate the pixel and region feature into MRF model. A structure feature descriptor is proposed to represent the structural characteristics of objects to disambiguate land cover types with similar spectral characteristics. The first step of the proposed algorithm is to classify the input image by using the multi-level MRF model, then the structural feature is used to classify the land cover types prone to misclassified based on the result of the first step. The proposed algorithm is evaluated by being compared with the result with single level MRF model and other existing classification method. Qualitative and quantitative experimental results show that the proposed algorithm can effectively capture the image data characteristics at different level which result in higher classification accuracy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《武汉大学学报:信息科学版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:武汉大学
  • 主编:刘经南
  • 地址:湖北武汉珞珈山
  • 邮编:430072
  • 邮箱:whuxxb@vip.163
  • 电话:027-68778045
  • 国际标准刊号:ISSN:1671-8860
  • 国内统一刊号:ISSN:42-1676/TN
  • 邮发代号:38-317
  • 获奖情况:
  • 全国优秀科技期刊,全国优秀高校自然科学学报一等奖,湖北省优秀期刊称号
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰地学数据库,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24217