位置:成果数据库 > 期刊 > 期刊详情页
业务流程的时延预测队列挖掘方法
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391.9[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]安徽理工大学信息科学系,安徽淮南232001, [2]安徽理工大学经管学院,安徽淮南232001
  • 相关基金:国家自然科学基金(No.61572035,No.61272153,No.61402011);安徽省自然科学基金(No.1508085MF111);安徽省高校自然科学基金重点项目(No.KJ2014A067).
中文摘要:

过程挖掘是针对流程信息系统所记录下的日志进行分析,将业务流程真实过程还原的技术。目前已有的方法多是基于控制流与数据流的观点,针对任务运行状态的,无时延的业务过程进行挖掘。但在挖掘存在多任务的有时延的业务进程方面,目前的方法存在一定局限性。提出基于队列挖掘优化过程模型的方法,首先利用现有的基于过程挖掘的方法,挖掘业务流程的初始模型。再运用队列挖掘的观点对特定的顾客进行时延预测,挖掘出顾客的行为信息,以此对初始流程模型进行优化。最后通过实例验证了所提出的优化挖掘方法的有效性,优化后的流程模型不仅对事件日志有很好的重放效果,并且能够反应出多类别的,且存在时延的业务流程中任务的行为信息。

英文摘要:

Process mining is to analyze the log of the process information system,and to restore the real process of the business process.At present,the existing methods are based on the control flow and data flow,work for business process mining without time delay of activities and mining the process execution state.However,there are some limitations in the existing methods for the development of the time delay of multi tasks.This paper proposes a method for optimizing the process model based on queue mining.Firstly,it uses the existing process mining method,and finds the initial model of the business process.Then,by using the view of queue mining,it predicts the time delay of a target-customer to generalize the customer’s behavior information which is used to optimize the initial process model.Finally,the effectiveness of the proposed method is verified by an example.The optimized process model not only has a good replay on the event log,but also can reflect the behavior information of the task in the business process with time delay.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887