在多机条件下,发电机d、g轴电压电流的变化正是反映本机与其它机组之间耦合特性的重要参数之一。该文建立了包含d、q轴电磁暂态的五阶发电机哈密顿模型,为更好地揭示多机耦合作用的内部动力学机制奠定基础。依据机电分析动力学理论,从发电机基本能量关系分别获得各子系统的拉格朗日函数、耗散函数和广义外力,得到发电机的拉格朗日麦克斯韦方程组。通过定义广义动量,将拉格朗日麦克斯韦方程组转化为广义哈密顿系统模型,模型结构清晰、能量流与实际物理系统一致。采用局部简化方法,将系统转化为实用参数描述的模型。提出了电站局部多机系统的概念,导出了以机端可测参数描述的隐式多机系统哈密顿模型。分析表明,该模型具有良好的结构特性。
Under local multi-machine condition, voltage and current changes of generator d and q axis are important parameters that mirror the coupling characteristics between local generator and others. Fifth order generator Hamiltonian model included electromagnetic transient of the d and q axis is established in this paper, which provides a foundation that reveals inner dynamics mechanism of multi-machine coupling and interaction. Based on electromechanical analysis dynamics theory, each of subsystem Lagrange function, dissipative function and generalized forces can be derived from fundamental energy relationship of the generator, then the Lagrange-Maxwell equations of the generator can be derived. The equations are transformed into the generalized Hamiltonian model by defining the generalized momentum, in which its structure is clear, its energy flow is consistent with actual physical system ones. The Hamiltonian model of generator is improved by the transition to that with practical parameters resulting from local simplified method. The conception of the local multi-machine system of power station is proposed, implicit multi-machine system Hamiltonian model described by measurable parameters on the generator port is derived. Analysis show that proposed model is well in structure.