本文试图利用统计测度理论刻画Banach空间X中的序列为理想L-几乎处处收敛的特征.设L2^N为任意一个统计型的理想,令XL=span{χA:A∈L}e∞,pL为商空间e∞/XL的商范数,pL(e)表示半范数pL在e≡χN点的次微分映射.本文证明了x^*∈pL(e)为一个端点当且仅当x^*是保正交不变的.证明了序列(xn) X L-几乎处处收敛于x∈X当且仅当存在(xn)的一个子列(x(nk))使得xnk→x(k→∞)且对任意x^*∈extpL(e),x^*为{e(nk)}的w^*-聚点,其中extpL(e)表示集合pL(e)的所有端点构成的集合.
The purpose of this paper is to characterize a sequence (xn) in Banach space X which is L-almost convergence via statistical measure theory. For every statistical ideal L2^N, let XL be the closure of span{χA:A∈L} in e∞ and pL the quotient norm of the quotient space e∞/XL, and pL(e) presents the set of subdifferentials of the seminorm pL at e≡χN. We show that a functional x^*∈pL(e) is an extremal point if and only if x^* is orthogonal preserved. We further show that a sequence (xn) is L-almost convergent to x if and only if there is a subsequence (xnk) of (xn) such that xnk→x as k→∞ and that x^* is a w^*-cluster point of {enk} for each x^*∈ ext pL(e), where ext pL(e) denotes the set of all extremal points of pL(e).