设A≡(ai)i=1^∞ S+^l1,其中,S+^l1表示l1单位球面上的所有正向量构成的集合.Banach空间X中的序列(xn)称为A-收敛于x∈X,是指对任意的ε〉0,limi→∞(ai ,χA(ε))=0,其中,A(ε)={n∈N∶‖xn -x‖≥ε}.用两种不同的收敛方式刻画 A-收敛,即证明对任意 A≡(ai )i=1^∞S +1,存在一个 N 上的理想 IA ,以及一族极端有限可加概率测度 P ext (IA ),使 A-收敛且理想 IA-收敛和测度 P ext (IA )-收敛互为等价.此外,证明 A-收敛为测度 P ext (IA )-几乎处处收敛的充分必要条件是该 A-收敛为非退化的.
Let A≡(ai)i=1^∞ S+^l1 ,a sequence (xn )of points in a Banach X is said to be A-convergent to x ∈X provided that for anyε〉0,lim i→∞〈ai ,χA(ε)〉=0,where A(ε)={n∈N∶‖xn -x‖≥ε}.In this paper,we give two different approa-ches of A-convergence via ideal on N and via extreme measures.We show that for any A≡(ai )i=1^∞ S l1^+,there exist an i-deal IA and a collection P ext (IA )of extreme probability measures such that the A-convergence,the ideal IA-convergence and the measure P ext (IA )-convergence are equivalent.We also show that A-convergence equivalent to P ext (IA )-almost usu-al convergence if and only if it is nondegenerate.