研究了p-Laplace型差分方程△[φp(△y(t-1))]-q(t)φp(y(f))+f(t,,y(t))=0的非平凡同宿轨的存在性,其中q(t)和f(t,y)没有任何周期性假设条件.首先建立了对应的变分框架;其次应用临界点理论得到非平凡同宿轨存在性的充分条件.将文献中P=2的情形推广到P≥2,改进了相应的结论.
This paper mainly deals with the existence of nontrivial homoclinic orbit for the p-Laplacian differ- ence equations △[φp(△y(t-1))]-q(t)φp(y(f))+f(t,,y(t))=0 without the periodicity assumptions on q (t) andf(t ,y). The authors establish the corresponding variational framework. By using the critical point theory, they obtain a sufficient condition for the existence of nontrivial homoclinic orbit. The result generalizes those obtained in the references in the case p = 2.