位置:立项数据库 > 立项详情页
时滞微分与差分系统的周期性以及同宿异宿轨问题
  • 项目名称:时滞微分与差分系统的周期性以及同宿异宿轨问题
  • 项目类别:面上项目
  • 批准号:10871053
  • 申请代码:A010701
  • 项目来源:国家自然科学基金
  • 研究期限:2009-01-01-2011-12-31
  • 项目负责人:郭志明
  • 负责人职称:教授
  • 依托单位:广州大学
  • 批准年度:2008
中文摘要:

本项目主要研究变分方法在时滞微分与差分系统周期解、同宿轨和异宿轨问题中的应用。具体说来,对含有时滞的微分与差分系统寻求适当的函数空间和含有偏差变元的作用泛函,应用和发展临界点理论中Minimax方法、几何指标理论、Morse理论与Maslov指标理论等工具,建立Hilbert空间上含有偏差变元泛函的临界点存在性定理与多解性定理,并用来研究时滞微分与差分系统周期解与次调和解的存在性、多解性以及最小周期等问题;进一步研究时滞微分系统与差分系统的同宿轨与异宿轨的存在性;将Kaplan-Yorke型方程的有关结果推广到非自治以及高维情形;开展对时滞微分与差分系统的应用研究,对人口动力学、经济学及自动控制中出现的各类时滞模型的周期振荡进行系统的研究,揭示其内在的本质规律。这些成果将为研究时滞微分与差分系统提供一种新的途径,填补这一领域的研究空白。这项研究既具有重要的理论意义又具有广阔的应用价值。

结论摘要:

英文主题词delay differential equation; difference equation; periodic solution; homoclinic and heteroclinic orbits; variational method


成果综合统计
成果类型
数量
  • 期刊论文
  • 会议论文
  • 专利
  • 获奖
  • 著作
  • 16
  • 0
  • 0
  • 0
  • 0
相关项目
期刊论文 31 会议论文 6
期刊论文 31 会议论文 2
期刊论文 8 会议论文 1
郭志明的项目