位置:成果数据库 > 期刊 > 期刊详情页
基于模糊KNN的刑侦图像场景分类
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西安邮电大学通信与信息工程学院,西安710121, [2]陕西省法庭科学电子信息实验研究中心,西安710121
  • 相关基金:国家自然科学基金资助项目(61202183,61340040);陕西省教育厅科研计划资助项目(12JK0543)
中文摘要:

针对刑侦图像数量大、质量差、管理难的特点,采用了一种基于模糊分类理论对刑侦视频图像的场景进行分类的方法。首先对监控视频图像的场景进行人工多标记分类,然后对刑侦视频图像提取两种纹理特征(局部二值模式和小波纹理)并进行融合,最后采用模糊K-最近邻(K-nearest neighbor,KNN)分类器实现刑侦图像四种场景(车辆、行人、建筑和街道)的分类并得到监控视频数据库中图像的模糊不确定性。实验结果表明,隶属度充分反映了刑侦图像的内容,同时分类的正确率高达85%,初步达到了对刑侦视频图像自动分类管理的目的。

英文摘要:

Based on the characteristics of criminal investigation images with large amount, poor quality and difficulty in man- agement, this paper studied the classification of criminal investigation image scenes by fuzzy classification theory. The first step was muhi-labeling the criminal investigation video images manually; the second step was to extract the texture features--local hinary pattern (LBP) and wavelet and fused them together; the last work was using the fuzzy KNN classifier to classify the criminal investigation images scene ( cars, people, buildings and streets) and got the fuzzy uncertainty of the images. The re- sults show that the memberships can represent the contents of the criminal investigation images effectively and the classification rate is up to 85%, preliminarily reaching the aim of automatic management of the criminal investigation images.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049