位置:成果数据库 > 期刊 > 期刊详情页
A SECOND ORDER MODIFIED CHARACTERISTICS VARIATIONAL MULTISCALE FINITE ELEMENT METHOD FOR TIME-DEPENDENT NAVIER-STOKES PROBLEMS
  • ISSN号:0254-9409
  • 期刊名称:《计算数学:英文版》
  • 时间:0
  • 分类:O357.1[理学—流体力学;理学—力学] O241.6[理学—计算数学;理学—数学]
  • 作者机构:[1]School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China
  • 相关基金:Project supported by the National Natural Science Foundation of China (No. 11271298)
中文摘要:

This paper considers Stokes and Newton iterations to solve stationary NavierStokes equations based on the finite element discretization. We obtain new sufficient conditions of stability and convergence for the two iterations. Specifically, when 0 < σ =(N||f||-1)ν2≤1/(2+1), the Stokes iteration is stable and convergent, where N is defined in the paper. When 0 < σ 511, the Newton iteration is stable and convergent. This work gives a more accurate admissible range of data for stability and convergence of the two schemes,which improves the previous results. A numerical test is given to verify the theory.

英文摘要:

This paper considers Stokes and Newton iterations to solve stationary Navier- Stokes equations based on the finite element discretization. We obtain new sufficient conditions of stability and convergence for the two iterations. Specifically, when 0 〈 σ =N||f||-1/v2≤1/√2+1 , the Stokes iteration is stable and convergent, where N is defined in the paper. When 0 〈 σ ≤5/11, the Newton iteration is stable and convergent. This work gives a more accurate admissible range of data for stability and convergence of the two schemes, which improves the previous results. A numerical test is given to verify the theory.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算数学:英文版》
  • 主管单位:
  • 主办单位:中国科学院数学与系统科学研究院
  • 主编:
  • 地址:北京2719信箱
  • 邮编:100080
  • 邮箱:
  • 电话:
  • 国际标准刊号:ISSN:0254-9409
  • 国内统一刊号:ISSN:11-2126/O1
  • 邮发代号:
  • 获奖情况:
  • 中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库
  • 被引量:193