该文主要讨论R^n上一类修正的Navier-Stokes方程弱解的长时间性态,通过进一步改进Fourier分解方法,得到了当初速度u0∈L^2∩L^1时其弱解在L^2范数下的最优衰减率为(1+t)^-n/4,同时该文也给出了修正的Navier-Stokes方程与经典Navier-Stokes方程的误差估计。
This paper is concerned with the large time behavior of the modified Navier-Stokes equations in R^n. By improving the Fourier splitting methods, it is proved that the weak solution decays in L2 norm at the rate (1 + t)^-n/4 when the initial data u0 ∈L^2∩ L^1. Moreover, the error estimate between modified Navier-Stokes equations and classic Navier-Stokes equations is studied.