证明了一个重要的Sobolev-Hardy型不等式:∫Ωu^2/(|y|^2ln^2|R/y|))≤4∫Ω|▽u|^2,而且证明了不等式中的常数4是最佳的.最后,利用Sobolev-Hardy不等式和山路引理证明了一类含临界指数的椭圆问题非平凡解的存在性.
The authors we prove an inequality of Sobole-Hardy type and prove that the best constant is attained in the inequality.Furthermore,using the Sobole-Hardy inequality and mountain pass theorem,the existence of a nontrivial solution for a nonlinear elliptic equation involving critical singularity is proved.