作为有机场效应晶体管的重要组成部分,有机半导体材料对器件性能有着重要的影响.相对于小分子半导体材料而言,聚合物半导体材料因其具有更容易溶液加工、适用于室温制备等优势,得到了研究者的广泛关注和研究.从20世纪70年代至今,聚合物半导体材料及其光电器件均得到了突飞猛进的发展.经过研究者们的不断探索创新,各种结构新颖的聚合物半导体材料层出不穷,器件制备工艺也不断优化改进,使得聚合物场效应晶体管的载流子迁移率从早期的10–5 cm2 V–1 s–1提升到了如今的36.3 cm2 V–1 s–1,在聚合物场效应材料分子结构的设计合成方面积累了丰富的经验,同时其内在电荷传输机理也随着材料和器件性能的提高不断明朗.本文以分子结构作为切入点,分别从p型、n型及双极性3种载流子传输类型方面对近5年报道的高迁移率聚合物半导体材料进行了系统的总结与归纳,同时还简要分析了聚合物半导体材料中的电荷传输机制及优化方法,希望对研究者进一步设计和合成更高性能的聚合物半导体材料及器件构筑起到一定的指导作用.
As an important part of organic field-effect transistors (OFETs), organic semiconductor plays an important role on the device performance. Compared with organic small semiconductors, polymeric semiconductors possess better solution processability and room-temperature-manufacturing ability, which make them be widely investigated. Since 1970s, significant advances have been achieved both on the development of high-mobility polymer semiconductors and construction of high-performance polymer FETs (PFETs). To date, the field-effect mobility of PFETs has been significantly increased from the initial value of 10-5 cm2 V-1 s-1 to the state-of-art value of 36.3 cm2 V-1 s-1 due to the both advances of developing high-performing polymeric semiconductors and optimizing device fabrication. Therefore, there have accumulated rich experience on molecular design for high-mobility polymer semiconductors and new insights of understanding charge transport physics have also been gained from the experiment. With molecular design as the entry point, this review systematically summarizes the recent progresses on polymeric semiconductors, including p-type, n-type and ambipolar semiconductors, then try to briefly analyze the nature of charge transport in polymeric semiconductors and the corresponding optimization processes for high performance PFETs, hopefully providing valuable guideline for the further scientific works in this field.